Multi-target Regression via Random Linear Target Combinations

نویسندگان

  • Grigorios Tsoumakas
  • Eleftherios Spyromitros Xioufis
  • Aikaterini Vrekou
  • Ioannis P. Vlahavas
چکیده

Multi-target regression is concerned with the simultaneous prediction of multiple continuous target variables based on the same set of input variables. It arises in several interesting industrial and environmental application domains, such as ecological modelling and energy forecasting. This paper presents an ensemble method for multi-target regression that constructs new target variables via random linear combinations of existing targets. We discuss the connection of our approach with multi-label classification algorithms, in particular RAkEL, which originally inspired this work, and a family of recent multi-label classification algorithms that involve output coding. Experimental results on 12 multi-target datasets show that it performs significantly better than a strong baseline that learns a single model for each target using gradient boosting and compares favourably to multi-objective random forest approach, which is a state-of-the-art approach. The experiments further show that our approach improves more when stronger unconditional dependencies exist among the targets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial intelligence-based approaches for multi-station modelling of dissolve oxygen in river

ABSTRACT: In this study, adaptive neuro-fuzzy inference system, and feed forward neural network as two artificial intelligence-based models along with conventional multiple linear regression model were used to predict the multi-station modelling of dissolve oxygen concentration at the downstream of Mathura City in India. The data used are dissolved oxygen, pH, biological oxygen demand and water...

متن کامل

Efficiency of Target Location Scenarios in the Multi-Transmitter Multi-Receiver Passive Radar

Multi-transmitter multi-receiver passive radar, which locates target in the surveillance area by the reflected signals of the available opportunistic transmitter from the target, is of interest in many applications. In this paper, we investigate different signal processing scenarios in multi-transmitter multi-receiver passive radar. These scenarios include decentralized processing of reference ...

متن کامل

Multi-target regression with rule ensembles

Methods for learning decision rules are being successfully applied to many problem domains, in particular when understanding and interpretation of the learned model is necessary. In many real life problems, we would like to predict multiple related (nominal or numeric) target attributes simultaneously. While several methods for learning rules that predict multiple targets at once exist, they ar...

متن کامل

Scrambled Objects for Least-Squares Regression

We consider least-squares regression using a randomly generated subspace GP ⊂ F of finite dimension P , where F is a function space of infinite dimension, e.g. L2([0, 1]). GP is defined as the span of P random features that are linear combinations of the basis functions of F weighted by random Gaussian i.i.d. coefficients. In particular, we consider multi-resolution random combinations at all s...

متن کامل

Target setting in the process of merging and restructuring of decision-making units using multiple objective linear programming

This paper presents a novel approach to achieving the goals of data envelopment analysis in the process of reconstruction and integration of decision-making units by using multiple objective linear programming. In this regard, first, we review inverse data envelopment analysis models for data reconstruction and integration. We present a model with multi-objective linear programming structure in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014